Neural Network Training Variations in Speech and Subsequent Performance Evaluation
نویسندگان
چکیده
In this work we study variance in the results of neural network training on a wide variety of configurations in automatic speech recognition. Although this variance itself is well known, this is, to the best of our knowledge, the first paper that performs an extensive empirical study on its effects in speech recognition. We view training as sampling from a distribution and show that these distributions can have a substantial variance. These observations have important implications on way results in the literature are reported and interpreted.
منابع مشابه
شبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملروشی جدید در بازشناسی مقاوم گفتار مبتنی بر دادگان مفقود با استفاده از شبکه عصبی دوسویه
Performance of speech recognition systems is greatly reduced when speech corrupted by noise. One common method for robust speech recognition systems is missing feature methods. In this way, the components in time - frequency representation of signal (Spectrogram) that present low signal to noise ratio (SNR), are tagged as missing and deleted then replaced by remained components and statistical ...
متن کاملImproving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM
Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...
متن کاملImproving the speech activity detection for the DARPA RATS phase-3 evaluation
This paper presents the work that we conducted for building the speech activity detection (SAD) systems for the phase 3 evaluation of the RATS program. The work focused on improving the SAD performance with the neural network (NN) approach. The major efforts include reducing the false rejections errors by extensions of speech regions in the training references and use of post-processing NNs, an...
متن کامل